820 research outputs found

    Vacancy diffusion in the triangular lattice dimer model

    Get PDF
    We study vacancy diffusion on the classical triangular lattice dimer model, sub ject to the kinetic constraint that dimers can only translate, but not rotate. A single vacancy, i.e. a monomer, in an otherwise fully packed lattice, is always localized in a tree-like structure. The distribution of tree sizes is asymptotically exponential and has an average of 8.16 \pm 0.01 sites. A connected pair of monomers has a finite probability of being delocalized. When delocalized, the diffusion of monomers is anomalous:Comment: 15 pages, 27 eps figures. submitted to Physical Review

    Kosterlitz-Thouless transition of the quasi two-dimensional trapped Bose gas

    Full text link
    We present Quantum Monte Carlo calculations with up to N=576000 interacting bosons in a quasi two-dimensional trap geometry closely related to recent experiments with atomic gases. The density profile of the gas and the non-classical moment of inertia yield intrinsic signatures for the Kosterlitz--Thouless transition temperature T_KT. From the reduced one-body density matrix, we compute the condensate fraction, which is quite large for small systems. It decreases slowly with increasing system sizes, vanishing in the thermodynamic limit. We interpret our data in the framework of the local-density approximation, and point out the relevance of our results for the analysis of experiments.Comment: 4 pages, 4 figure

    Selective-pivot sampling of radial distribution functions in asymmetric liquid mixtures

    Full text link
    We present a Monte Carlo algorithm for selectively sampling radial distribution functions and effective interaction potentials in asymmetric liquid mixtures. We demonstrate its efficiency for hard-sphere mixtures, and for model systems with more general interactions, and compare our simulations with several analytical approximations. For interaction potentials containing a hard-sphere contribution, the algorithm yields the contact value of the radial distribution function.Comment: 5 pages, 5 figure

    A Rapid Dynamical Monte Carlo Algorithm for Glassy Systems

    Full text link
    In this paper we present a dynamical Monte Carlo algorithm which is applicable to systems satisfying a clustering condition: during the dynamical evolution the system is mostly trapped in deep local minima (as happens in glasses, pinning problems etc.). We compare the algorithm to the usual Monte Carlo algorithm, using as an example the Bernasconi model. In this model, a straightforward implementation of the algorithm gives an improvement of several orders of magnitude in computational speed with respect to a recent, already very efficient, implementation of the algorithm of Bortz, Kalos and Lebowitz.Comment: RevTex 7 pages + 4 figures (uuencoded) appended; LPS preprin

    Damage spreading and coupling in Markov chains

    Full text link
    In this paper, we relate the coupling of Markov chains, at the basis of perfect sampling methods, with damage spreading, which captures the chaotic nature of stochastic dynamics. For two-dimensional spin glasses and hard spheres we point out that the obstacle to the application of perfect-sampling schemes is posed by damage spreading rather than by the survey problem of the entire configuration space. We find dynamical damage-spreading transitions deeply inside the paramagnetic and liquid phases, and show that critical values of the transition temperatures and densities depend on the coupling scheme. We discuss our findings in the light of a classic proof that for arbitrary Monte Carlo algorithms damage spreading can be avoided through non-Markovian coupling schemes.Comment: 6 pages, 8 figure

    Creep dynamics of elastic manifolds via exact transition pathways

    Full text link
    We study the steady state of driven elastic strings in disordered media below the depinning threshold. In the low-temperature limit, for a fixed sample, the steady state is dominated by a single configuration, which we determine exactly from the transition pathways between metastable states. We obtain the dynamical phase diagram in this limit. At variance with a thermodynamic phase transition, the depinning transition is not associated with a divergent length scale of the steady state below threshold, but only of the transient dynamics. We discuss the distribution of barrier heights, and check the validity of the dynamic phase diagram at small but finite temperatures using Langevin simulations. The phase diagram continues to hold for broken statistical tilt symmetry. We point out the relevance of our results for experiments of creep motion in elastic interfaces.Comment: 14 pages, 18 figure

    Equilibrium equation of state of a hard sphere binary mixture at very large densities using replica exchange Monte-Carlo simulations

    Full text link
    We use replica exchange Monte-Carlo simulations to measure the equilibrium equation of state of the disordered fluid state for a binary hard sphere mixture up to very large densities where standard Monte-Carlo simulations do not easily reach thermal equilibrium. For the moderate system sizes we use (up to N=100), we find no sign of a pressure discontinuity near the location of dynamic glass singularities extrapolated using either algebraic or simple exponential divergences, suggesting they do not correspond to genuine thermodynamic glass transitions. Several scenarios are proposed for the fate of the fluid state in the thermodynamic limit.Comment: 10 pages, 8 fig

    Depinning exponents of the driven long-range elastic string

    Full text link
    We perform a high-precision calculation of the critical exponents for the long-range elastic string driven through quenched disorder at the depinning transition, at zero temperature. Large-scale simulations are used to avoid finite-size effects and to enable high precision. The roughness, growth, and velocity exponents are calculated independently, and the dynamic and correlation length exponents are derived. The critical exponents satisfy known scaling relations and agree well with analytical predictions.Comment: 6 pages, 5 figure

    Phase diagram of the bose Hubbard model

    Full text link
    The first reliable analytic calculation of the phase diagram of the bose gas on a dd-dimensional lattice with on-site repulsion is presented. In one dimension, the analytic calculation is in excellent agreement with the numerical Monte Carlo results. In higher dimensions, the deviations from the Monte Carlo calculations are larger, but the correct shape of the Mott insulator lobes is still obtained. Explicit expressions for the energy of the Mott and the ``defect'' phase are given in a strong-coupling expansion.Comment: RevTeX 3.
    corecore